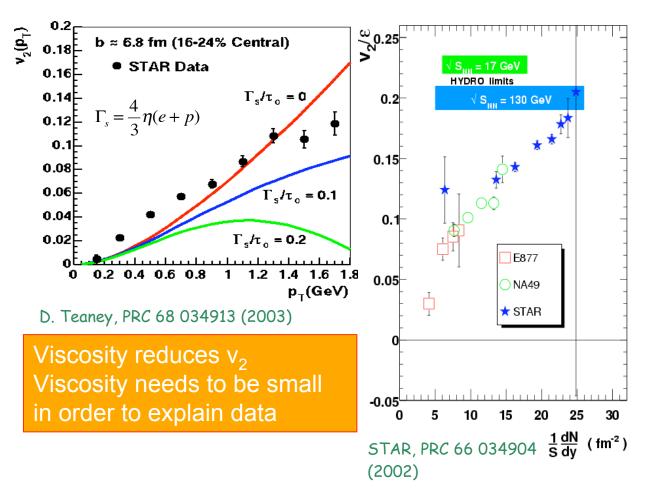
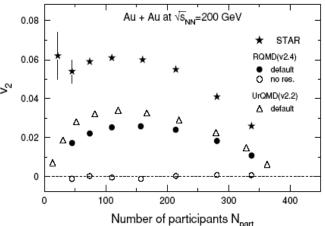


Global fits of v_2 and their implications to Hydrodynamical limit and η/s

Aihong Tang, Raimond Snellings and Hiroshi Masui

The story rewinded



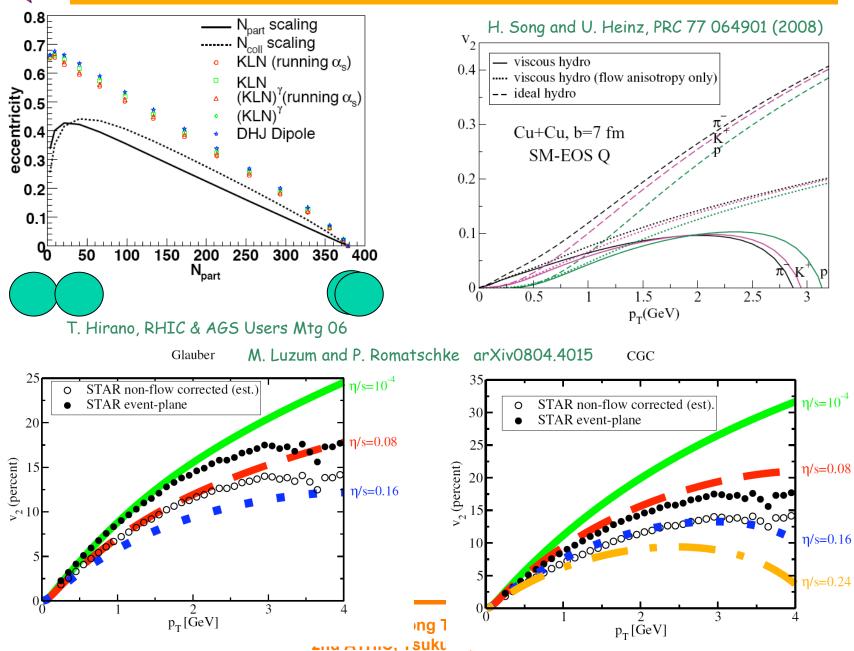


Y. Lu et al. Journal of Phys. G 32 1121(2006)

 v_2/ϵ approaches the limit of ideal hydrodynamics Hadronic interaction alone does not produce enough v_2

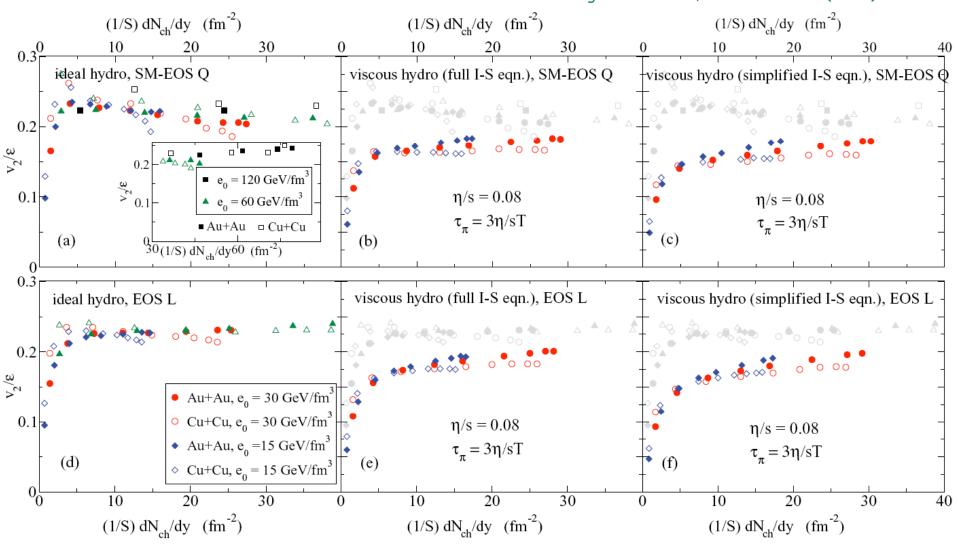
STAR

The story continues

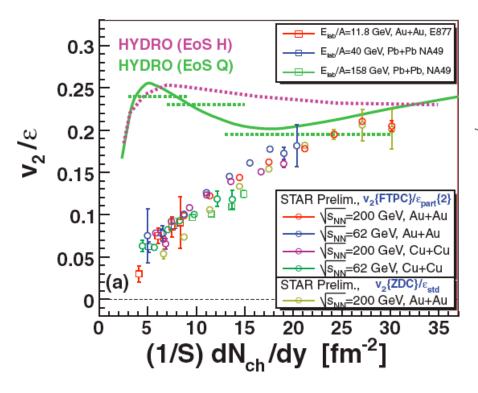


The story continues

H. Song and U. Heinz, PRC 78 024902 (2008)



The story continues



Au+Au, $e_0 = 30 \text{ GeV/fm}^3$, $\sqrt{\text{s}} \sim 200 \text{ GeV}$ 0.3• Au+Au, $e_0 = 15 \text{ GeV/fm}^3$, $\sqrt{s} \sim 62.5 \text{ GeV}$ 0.25 \diamond Cu+Cu, $e_0 = 15 \text{ GeV/fm}^3$, $\sqrt{s} \sim 200 \text{ GeV}$ 0.2 viscous hydro, full I-S, EOS L 0.05 $\tau_{\pi} = 3\eta/sT$ 10 15 30 5 35 20 25 $(1/S) dN_{ch}/dy (fm^{-2})$

STAR, PRC 66 034904 (2002) S.Voloshin, AIP Conf. Proc. 870, 691 (2006)

H. Song and U. Heinz, PRC 78 024902 (2008)

How to view the hydro behavior better? - Move away from it

- Ideal fluid and low viscosity \Leftrightarrow local equilibrium (small λ or large σ)
- To study the local equilibrium, we have to move away from it, say, check what if we relax the constraint of local equilibrium
- How to get a complete view? Study Boltzman equation for diluted system. It recovers Hydro when λ becomes small.

"To have a complete view of Lu Mountain, one has to move away from it."

- Shi Su (1037~1101)

Transport Theory and Hydrodynamics

Transport Theory

Microscopic

Applicable out of equilibrium

Cannot describe phase transition

D<<1

Hydrodynamics

Macroscopic

Local equilibrium

Can treat phase transition

K<<1

D (Dilution parameter) =

K (Knudsen number) =

Typical distance between two particles

Mean free path

Mean free path
System size

Boltzmann Equation will be reduced to Hydrodynamics when both D<<1 and K<<1

Connecting Pieces

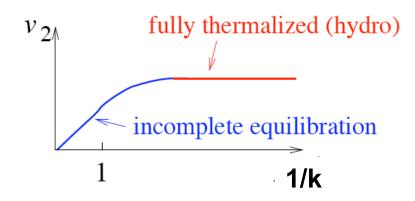
$$D \equiv \frac{n^{-1/3}}{\lambda} = \sigma n^{2/3}$$

n: particle density

 σ : parton cross section

R: system size

λ: mean free path



$$\lambda = \frac{1}{\sigma n}$$

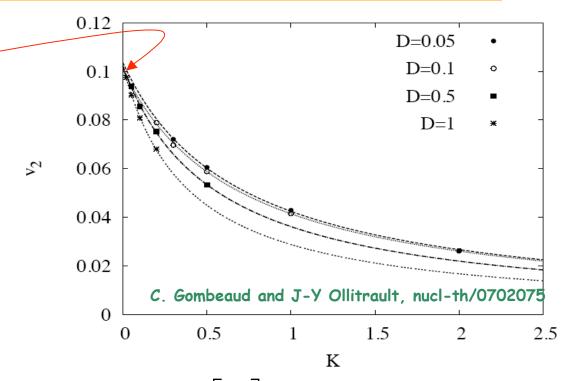
$$n = \frac{1}{ct} \frac{1}{S} \frac{dN}{dy}$$

$$t \sim R / c_s$$

$$\frac{1}{K} = \sigma \left(\frac{1}{S} \frac{dN}{dy} \right) \frac{c_s}{c}$$

v₂ from Solving the Boltzmann Equation

Hydro limit is recovered when D<<1 and K <<1



 $v_2/\epsilon \propto 1/K$, when K is large (low density limit) $v_2/\epsilon \propto K$, when K is small (ideal Hydro limit)

$$\Rightarrow \frac{\frac{v_2}{\varepsilon} = \left[\frac{v_2}{\varepsilon}\right]_{hydro}}{\frac{1}{1+K/K_0}}$$

$$\Rightarrow \frac{\frac{v_2}{\varepsilon} = \left[\frac{v_2}{\varepsilon}\right]_{hydro}}{\frac{2}{\pi} \operatorname{atan}\left(\frac{1}{K/K_0}\right)}$$

$$\frac{v_2}{\varepsilon} = \left[\frac{v_2}{\varepsilon}\right]_{hydro}}{\frac{1}{2} \left(1 - e^{-\frac{1}{K/K_0}} + e^{-K/K_0}\right)}$$

Choose the right $\{v_2, \varepsilon\}$ pairs

v₂ that are sensitive to anisotropy w.r.t. the **Reaction Plane v₂:**

 v_2 {4}, v_2 {qDist}, v_2 {qCumulant4}, v_2 {ZDCSMD}

ε that are sensitive to anisotropy w.r.t. the Reaction Plane:

 ε {std}, ε {4}

v₂ that are sensitive to anisotropy w.r.t. the

Participant Plane:

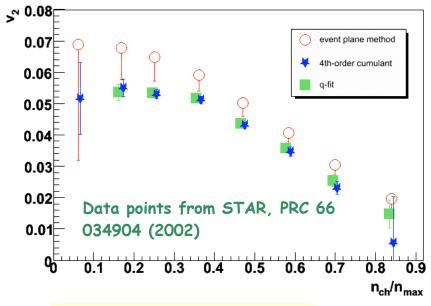
 $v_2{2}, v_2{EP}, v_2{uQ}$ etc.

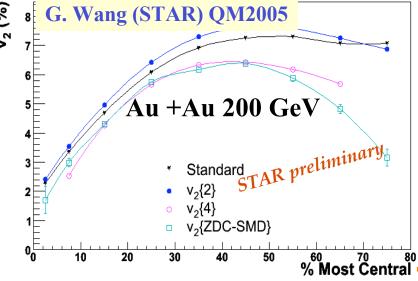
ε That are sensitive to anisotropy w.r.t. the **Participant Plane:**

 ε {part} ε {2}

R.Bhalerao and J-Y. Ollitrault, Phys. Lett. B 614 (2006) 260 S.Voloshin, A.Poskanzer, A.Tang and G.Wang, Phys. Lett. B 659 (2008) 537

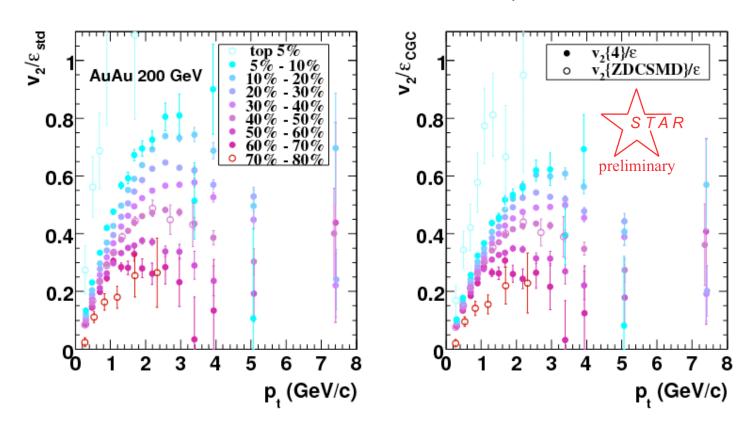
v₂ methods





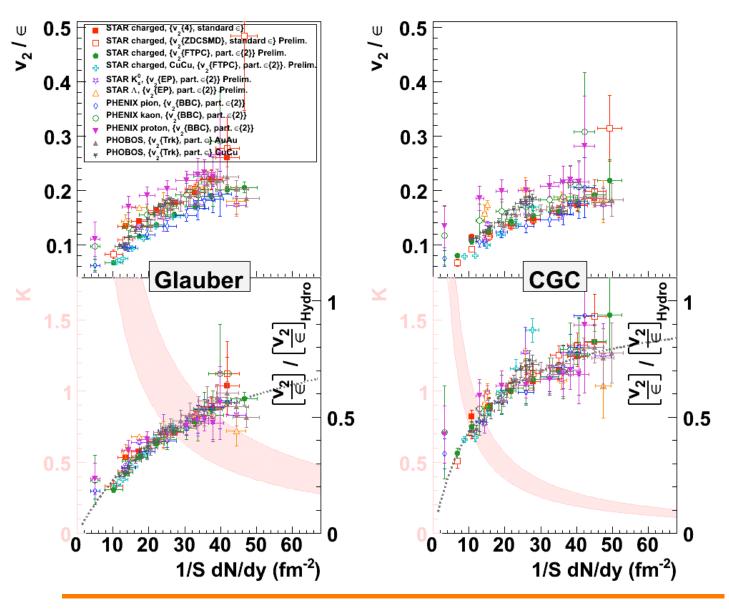
 $v_2{4}=v_2{ZDC-SMD}$

Flow increases



The p_t where v_2/ϵ peaks increases with p_t - the applicable range For hydrodynamics extends to large p_t in central collisions. v_2/ϵ for the CGC case sees hints of saturation.

How much deviation from ideal hydro?



STAR Preliminary data taken from G.Wang, QM05 Y.Bai SQM08 H.Masui SQM08

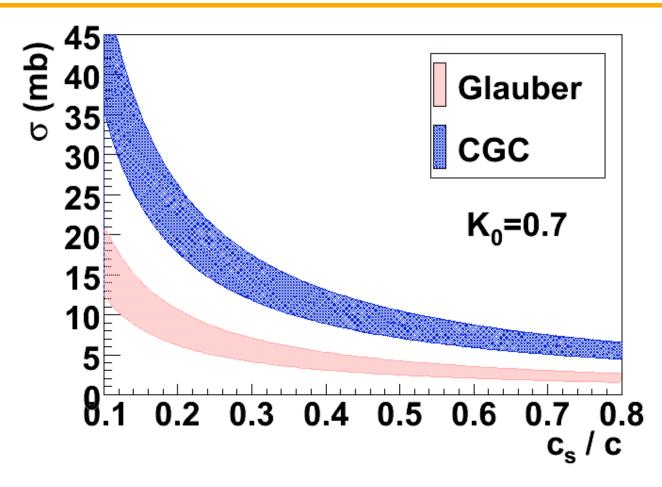
PHENIX data points taken from nucl-ex/0604011

PHOBOS data points taken from PRC72 051901 (2005) PRL 98 242302 (2007)

Fitting function from Drescher, Dumitru, Gombeaud, J.Ollitrault, Phys. Rev. C76, 024905(2007)

CGC ϵ obtained from A.Adil, H-J Drescher, A. Dumitru, A. Hayashigaki and Y.Nara, Phys. Rev. C 74 044905 (2006)

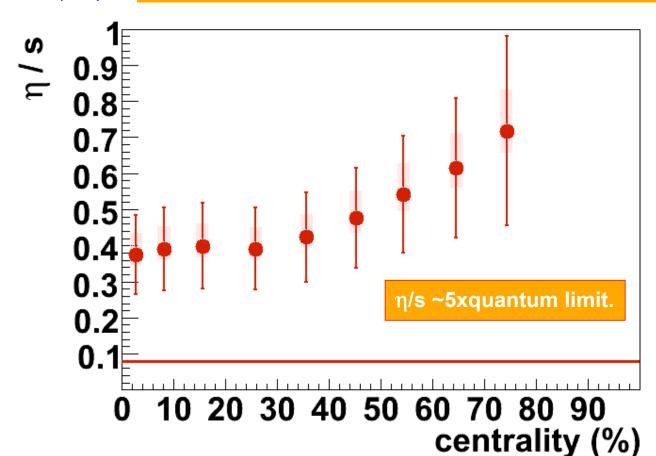
Constraint on EoS



$$\sigma\left(\frac{c_s}{c}\right)k_0 = const.$$

STAR

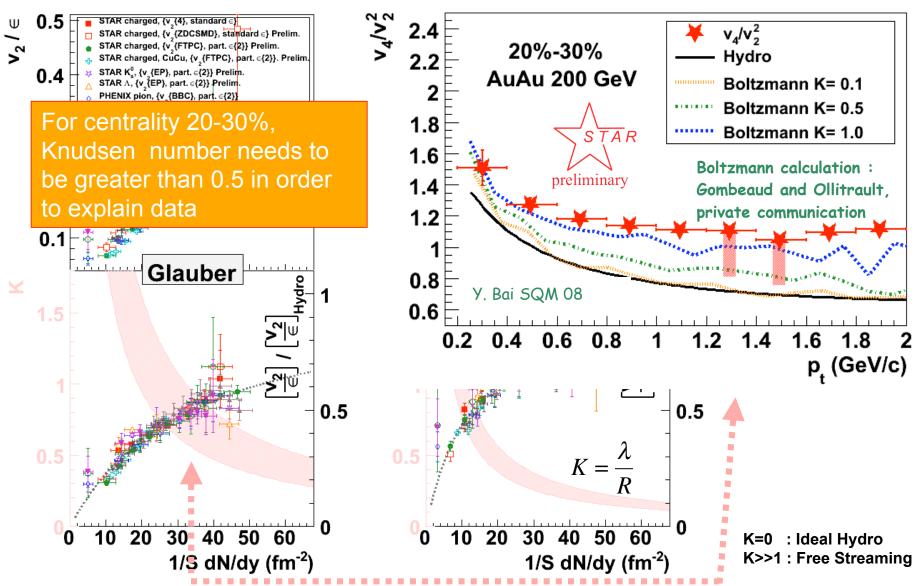
Constraint on η/s



- Sys. error from uncertainties, correlated and uncorrelated, in v₂, ε, S, and dN/dy are included in the fitting procedure.
- Uncertainty due to the sys. error of T and the choice of formula is represented by the light red box.
- Additional uncertainties will be discussed later.

$$\frac{\eta}{s} = 0.316 \frac{\lambda T}{c} = 0.316 \frac{T}{c\sigma n} = 0.316 \frac{T}{c\sigma \frac{1}{S} \frac{dN}{dy} \cdot \frac{1}{\overline{R}/(c_s/c)}} = 0.316 \frac{T}{\sigma c_s} \cdot \frac{1}{\frac{1}{S\overline{R}} \frac{dN}{dy}}$$

A slightly different approach on Knudsen number



For the discussion

$$\frac{1}{K} \equiv \frac{R}{\lambda}$$

$$\lambda = \frac{1}{\sigma n}$$

$$n = \frac{1}{ct} \frac{1}{S} \frac{dN}{dy}$$

$$t \sim R / c_s$$

- Time independent K. Correction on effective λ . $\eta/s \downarrow$
- Correction on effective T. η/s ↑
- Uncertainty in K_0 (?). Needs a better answer from viscous Hydro calculation.

- ...

$$\frac{v_2}{\varepsilon} = \left[\frac{v_2}{\varepsilon}\right]_{hydro} \frac{1}{1 + K / K_0}$$

$$\frac{\eta}{s} = 0.316 \frac{\lambda T}{c} = 0.316 \frac{T}{c\sigma n} = 0.316 \frac{T}{c\sigma \frac{1}{S} \frac{dN}{dy} \cdot \frac{1}{\overline{R}/(c_s/c)}} = 0.316 \frac{T}{\sigma c_s} \cdot \frac{1}{\frac{1}{S\overline{R}} \frac{dN}{dy}}$$

Summary

- v_2/ϵ , if examined with transport motivated formula with certain assumptions, approaches Hydro limit in a similar way for different particle species.
- In central AuAu collisions, with Glauber initial condition, v_2/ϵ is 2--30% away from Hydro limit. This conclusion is independent of PID, initial conditions, and choice of $\{v_2, \epsilon\}$ pairs.
- Knudsen number extracted from fitting v_2/ϵ vs. 1/S dN/dy, as well as that extracted from v_4/v_2^2 , stays finite for central collisions not as zero as required by ideal hydrodynamics.
- Constraint on EoS obtained.
- For the first time the centrality dependence of η /s is presented.